Software Engineering for Machine Learning
  • Preface
  • Introduction to Python
  • Version Control
  • Code Review
  • Testing
  • Web Services
  • Continuous Integration
  • Graphics
  • Reproducibility
  • Machine Learning
  • K-Means Clustering
  • Hierarchical Clustering
  • Principal Component Analysis
  • Practical Considerations of Clustering
  • Floating Point and Finite Precision
  • Supervised Machine Learning
  • Gradient Descent
  • Support Vector Machines
  • Neural Networks
  • Building the Book using Sphinx, GitHub Pages, and Travis
  • Sphinx Demonstration
Software Engineering for Machine Learning
  • Docs »
  • Index

Index

C | D | E | I | M | N | O | P | S | T | U

C

  • characteristics
    • Python
  • cost function

D

  • dynamic typing
  • dynamically typed

E

  • Euclidean distance

I

  • introduction
    • Python

M

  • maximization problem
  • minimization problem

N

  • nondeclarative

O

  • optimization problem

P

  • profit function
  • Python
    • characteristics
    • introduction

S

  • scripting

T

  • typeless

U

  • unsupervised learning
  • unsupervised learning: clustering
  • unsupervised learning: clustering: k-mean

© Copyright 2019, Yung-Hsiang Lu and George K. Thiruvathukal

Built with Sphinx using a theme provided by Read the Docs.